Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients

نویسنده

  • Alessio Figalli
چکیده

In this paper we extend recent results on the existence and uniqueness of solutions of ODEs with non-smooth vector fields to the case of martingale solutions, in the StroockVaradhan sense, of SDEs with non-smooth coefficients. In the first part we develop a general theory, which roughly speaking allows to deduce existence, uniqueness and stability of martingale solutions for L-almost every initial condition x whenever existence and uniqueness is known at the PDE level in the L∞-setting (and, conversely, if existence and uniqueness of martingale solutions is known for L-a.e. initial condition, then existence and uniqueness for the PDE holds). In the second part of the paper we consider situations where, on the one hand, no pointwise uniqueness result for the martingale problem is known and, on the other hand, well-posedness for the Fokker-Planck equation can be proved. Thus, the theory developed in the first part of the paper is applicable. In particular, we will study the FokkerPlanck equation in two somehow extreme situations: in the first one, assuming uniform ellipticity of the diffusion coefficients and Lipschitz regularity in time, we are able to prove existence and uniqueness in the L-setting; in the second one we consider an additive noise and, assuming the drift b to have BV regularity and allowing the diffusion matrix a to be degenerate (also identically 0), we prove existence and uniqueness in the L∞-setting. Therefore, in these two situations, our theory yields existence, uniqueness and stability results for martingale solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate irregular SDEs with jumps and application to integro-differential equations of Fokker-Planck type

We investigate stochastic differential equations with jumps and irregular coefficients, and obtain the existence and uniqueness of generalized stochastic flows. Moreover, we also prove the existence and uniqueness of L-solutions or measure-valued solutions for second order integro-differential equation of Fokker-Planck type.

متن کامل

Weak Solutions for Forward – Backward Sdes — a Martingale Problem Approach

In this paper, we propose a new notion of Forward–Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the forward–backward stochastic differential equations (FBSDEs). The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of an FBSDE. We first prove a general suffi...

متن کامل

A novel existence and uniqueness theorem for solutions to FDEs driven by Lius process with weak Lipschitz coefficients

This paper we investigate the existence and uniqueness of solutions to fuzzydierential equations driven by Liu's process. For this, it is necessary to provideand prove a new existence and uniqueness theorem for fuzzy dierential equationsunder weak Lipschitz condition. Then the results allows us to considerand analyze solutions to a wide range of nonlinear fuzzy dierential equationsdriven by Liu...

متن کامل

On weak solutions of forward–backward SDEs

In this paper we continue exploring the notion of weak solution of forward–backward stochastic differential equations (FBSDEs) and associated forward–backward martingale problems (FBMPs). The main purpose of this work is to remove the constraints on the martingale integrands in the uniqueness proofs in our previous work (Ma et al. in Ann Probab 36(6):2092–2125, 2008). We consider a general clas...

متن کامل

Weak Solutions of Forward-Backward SDEs and Their Uniqueness

In this paper we propose a new notion of Forward-Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the backward stochastic differential equations. The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of a forward-backward stochastic differential equation (FBSDE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010